Simple Synthesis of Molybdenum Disulfide/Reduced Graphene Oxide Composite Hollow Microspheres as Supercapacitor Electrode Material
نویسندگان
چکیده
MoS₂/RGO composite hollow microspheres were hydrothermally synthesized by using SiO₂/GO microspheres as a template, which were obtained via the sonication-assisted interfacial self-assembly of tiny GO sheets on positively charged SiO₂ microspheres. The structure, morphology, phase, and chemical composition of MoS₂/RGO hollow microspheres were systematically investigated by a series of techniques such as FE-SEM, TEM, XRD, TGA, BET, and Raman characterizations, meanwhile, their electrochemical properties were carefully evaluated by CV, GCD, and EIS measurements. It was found that MoS₂/RGO hollow microspheres possessed unique porous hollow architecture with high-level hierarchy and large specific surface area up to 63.7 m²·g-1. When used as supercapacitor electrode material, MoS₂/RGO hollow microspheres delivered a maximum specific capacitance of 218.1 F·g-1 at the current density of 1 A·g-1, which was much higher than that of contrastive bare MoS₂ microspheres developed in the present work and most of other reported MoS₂-based materials. The enhancement of supercapacitive behaviors of MoS₂/RGO hollow microspheres was likely due to the improved conductivity together with their distinct structure and morphology, which not only promoted the charge transport but also facilitated the electrolyte diffusion. Moreover, MoS₂/RGO hollow microsphere electrode displayed satisfactory long-term stability with 91.8% retention of the initial capacitance after 1000 charge/discharge cycles at the current density of 3 A·g-1, showing excellent application potential.
منابع مشابه
Self-templated Synthesis of Nickel Silicate Hydroxide/Reduced Graphene Oxide Composite Hollow Microspheres as Highly Stable Supercapacitor Electrode Material
Nickel silicate hydroxide/reduced graphene oxide (Ni3Si2O5(OH)4/RGO) composite hollow microspheres were one-pot hydrothermally synthesized by employing graphene oxide (GO)-wrapped SiO2 microspheres as the template and silicon source, which were prepared through sonication-assisted interfacial self-assembly of tiny GO sheets on positively charged SiO2 substrate microspheres. The composition, mor...
متن کاملHIGH PERFORMANCE SUPERCAPACITOR ELECTRODE MATERIAL BASED ON FLOWER LIKE MoS2/REDUCED GRAPHENE OXIDE NANOCOMPOSITE
A simple and cost effective hydrothermal method has been done for the synthesis of MoS2 and MoS2/rGO nanocomposites. The prepared MoS2/rGO composite was characterized by XRD, FESEM and TEM which revealed the formation and as well as the morphological scenario of MoS2/rGO nanocomposite. Pure MoS2 and MoS2/rGO nanocomposite show 3D hierarchical flowery architecture where rGO nanosheets were inter...
متن کاملReduced Graphene Oxide-Cr2O3 Nanocomposite as Electrode Material in Supercapacitors
In recent years, electrochemical supercapacitors have received considerable attention from many researchers. Metal oxides such as chromium oxide with high redox activity, high specific capacity, and excellent reversibility are suitable alternatives to ruthenium oxide in supercapacitor applications. In this study, first, graphene oxide (GO) was synthesized by the modified Hummers method. The syn...
متن کاملGraphene decorated with MoS2 nanosheets: a synergetic energy storage composite electrode for supercapacitor applications.
The two-dimensional (2D) transition metal dichalcogenide nanosheet-carbon composite is an attractive material for energy storage because of its high Faradaic activity, unique nanoconstruction and electronic properties. In this work, a facile one step preparation of a molybdenum disulfide (MoS2) nanosheet-graphene (MoS2/G) composite with the in situ reduction of graphene oxide is reported. The s...
متن کاملCarbon black-intercalated reduced graphene oxide electrode with graphene oxide separator for high-performance supercapacitor
We present a general study on a high performance supercapacitor based on intercalated reduced graphene oxide with carbon black nanoparticles. Graphene oxide sheets were synthesized by oxidation and exfoliation of natural graphite and were reduced using hydroiodic acid in the presence of carbon black nanoparticles. Graphene paper was fabricated by one-step procedure via simultaneous reducing and...
متن کامل